Přeskočit navigaci

TartanAir: AirSim Simulation Dataset for Simultaneous Localization and Mapping

VSLAM AirSim Images Tartan Air

Data autonomních vozidel TartanAir AirSim generovaná pro řešení simultánní lokalizace a mapování (SLAM)

Simultánní lokalizace a mapování (SLAM, Simultaneous Localization and Mapping) je jednou z nejzákladnějších funkcí nezbytných pro roboty. Vzhledem ke všudypřítomnosti obrázků se vizuální SLAM (V-SLAM) stal důležitou součástí mnoha autonomních systémů. Významného pokroku se dosáhlo u geometrických metod a metod založených na strojovém učení. Vývoj robustních a spolehlivých metod SLAM pro aplikace reálného světa ale stále představuje náročný problém. Reálná prostředí jsou plná obtížných případů, jako jsou změny světla nebo nedostatek osvětlení, dynamické objekty a scény bez textur. Tato datová sada využívá výhod pokročilých technologií počítačového zpracování obrazu a jejím cílem je pokrýt různé scénáře se simulacemi náročných funkcí.


Data jsou shromažďována v prostředích fotorealistické simulace za různých světelných podmínek, za různého počasí a za přítomnosti pohybujících se objektů. Shromažďováním dat v rámci simulací jsme schopní získat multimodální senzorová data a přesné popisky „základní pravda“ (ground truth), včetně stereo obrázků RGB, obrázků s hloubkou, segmentace, optického toku a poloh kamery. Vytvořili jsme velký počet prostředí s různými styly a scénami, včetně náročných úhlů pohledu a různých vzorů pohybu, kterých by bylo obtížné dosáhnout prostřednictvím fyzických platforem shromažďování dat. Čtyři nejdůležitější funkce naší datové sady: 1) Velký objem různorodých skutečných dat 2) Vícemodální popisky „základní pravda“ (ground truth) 3) Různorodé vzory pohybu 4) Náročné scény

Tato datová sada poskytuje 5 typů dat:

  • Stereo obrázky: typu image (png).

  • Soubor hloubky: typu numpy (npy).

  • Segmentační soubor: typu numpy (npy).

  • Soubor optického toku: typu numpy (npy).

  • Soubor polohy kamery: typu text (txt).

Shromažďuje se z různých prostředí a v roce 2019 obsahuje celkem stovky trajektorií (3TB).

Náročné vizuální efekty

V některých situacích tato datová sada simuluje několik typů náročných vizuálních efektů.

  • Zhoršené světelné podmínky. Střídání dne a noci. Nízká intenzita osvětlení. Rychle se měnící osvětlení.
  • Vlivy počasí. Jasná obloha, déšť, sníh, vítr a mlha.
  • Změny ročních období.

Umístění úložiště

Tato datová sada se uchovává v oblasti Azure Východní USA. Kvůli přidružení se doporučuje přidělovat výpočetní prostředky v oblasti Východní USA.

Licenční podmínky

Tento projekt se vydává v rámci licence MIT. Další podrobnosti najdete v licenčním souboru.

Další informace

Další informace o této datové sadě najdete tady a tady.

Citace

Podrobnější technické údaje jsou k dispozici v příspěvku AirSim (konference FSR 2017). Při citaci prosím uvádějte:

@article{tartanair2020arxiv, title = {TartanAir: A Dataset to Push the Limits of Visual SLAM}, author = {Wenshan Wang, Delong Zhu, Xiangwei Wang, Yaoyu Hu, Yuheng Qiu, Chen Wang, Yafei Hu, Ashish Kapoor, Sebastian Scherer}, journal = {arXiv preprint arXiv:2003.14338}, year = {2020}, url = {https://arxiv.org/abs/2003.14338} } @inproceedings{airsim2017fsr, author = {Shital Shah and Debadeepta Dey and Chris Lovett and Ashish Kapoor}, title = {AirSim: High-Fidelity Visual and Physical Simulation for Autonomous Vehicles}, year = {2017}, booktitle = {Field and Service Robotics}, eprint = {arXiv:1705.05065}, url = {https://arxiv.org/abs/1705.05065} }

Kontakt

Pokud ohledně tohoto zdroje dat máte jakékoli dotazy, zašlete e-mail na adresu . Můžete také oslovit přispěvatele na přidruženém GitHubu.

Sdělení

MICROSOFT POSKYTUJE SLUŽBU AZURE OPEN DATASETS TAK, JAK JE. MICROSOFT V SOUVISLOSTI S VAŠÍM POUŽÍVÁNÍM DATOVÝCH SAD NEPOSKYTUJE ŽÁDNÉ ZÁRUKY, AŤ UŽ VÝSLOVNÉ NEBO PŘEDPOKLÁDANÉ, ANI JEJ NIJAK NEPODMIŇUJE. V ROZSAHU POVOLENÉM MÍSTNÍM ZÁKONEM MICROSOFT ODMÍTÁ JAKOUKOLI ODPOVĚDNOST ZA ŠKODY A ZTRÁTY ZPŮSOBENÉ VAŠÍM POUŽÍVÁNÍM DATOVÝCH SAD, VČETNĚ PŘÍMÝCH, NÁSLEDNÝCH, ZVLÁŠTNÍCH, NEPŘÍMÝCH, NÁHODNÝCH NEBO TRESTNÍCH ŠKOD.

Na tuto datovou sadu se vztahují původní podmínky, které Microsoft přijal se zdrojovými daty. Datová sada může obsahovat data pocházející z Microsoftu.

Access

Available inWhen to use
Azure Notebooks

Quickly explore the dataset with Jupyter notebooks hosted on Azure or your local machine.

Select your preferred service:

Azure Notebooks

Azure Notebooks

Package: Language: Python

Demo notebook for accessing TartanAir data on Azure

!! NOTE: This sample file should only be used on Azure. To download the data to your local machine, please refer to the website: http://theairlab.org/tartanair-dataset/

This notebook provides an example of accessing TartanAir data from blobl storage on Azure, including:

1) navigate the directories of different environments and trajectories.

2) load the data into memory, and

3) visualize the data.

Data directory structure

ROOT
|
--- ENV_NAME_0                             # environment folder
|       |
|       ---- Easy                          # difficulty level
|       |      |
|       |      ---- P000                   # trajectory folder
|       |      |      |
|       |      |      +--- depth_left      # 000000_left_depth.npy - 000xxx_left_depth.npy
|       |      |      +--- depth_right     # 000000_right_depth.npy - 000xxx_right_depth.npy
|       |      |      +--- flow            # 000000_000001_flow/mask.npy - 000xxx_000xxx_flow/mask.npy
|       |      |      +--- image_left      # 000000_left.png - 000xxx_left.png 
|       |      |      +--- image_right     # 000000_right.png - 000xxx_right.png 
|       |      |      +--- seg_left        # 000000_left_seg.npy - 000xxx_left_seg.npy
|       |      |      +--- seg_right       # 000000_right_seg.npy - 000xxx_right_seg.npy
|       |      |      ---- pose_left.txt 
|       |      |      ---- pose_right.txt
|       |      |  
|       |      +--- P001
|       |      .
|       |      .
|       |      |
|       |      +--- P00K
|       |
|       +--- Hard
|
+-- ENV_NAME_1
.
.
|
+-- ENV_NAME_N

Notebook dependencies

pip install numpy

pip install azure-storage-blob

pip install opencv-python

Imports and contrainer_client

In [1]:
from azure.storage.blob import ContainerClient
import numpy as np
import io
import cv2
import time
import matplotlib.pyplot as plt
%matplotlib inline

# Dataset website: http://theairlab.org/tartanair-dataset/
account_url = 'https://tartanair.blob.core.windows.net/'
container_name = 'tartanair-release1'

container_client = ContainerClient(account_url=account_url, 
                                 container_name=container_name,
                                 credential=None)

List the environments and trajectories

In [2]:
def get_environment_list():
    '''
    List all the environments shown in the root directory
    '''
    env_gen = container_client.walk_blobs()
    envlist = []
    for env in env_gen:
        envlist.append(env.name)
    return envlist

def get_trajectory_list(envname, easy_hard = 'Easy'):
    '''
    List all the trajectory folders, which is named as 'P0XX'
    '''
    assert(easy_hard=='Easy' or easy_hard=='Hard')
    traj_gen = container_client.walk_blobs(name_starts_with=envname + '/' + easy_hard+'/')
    trajlist = []
    for traj in traj_gen:
        trajname = traj.name
        trajname_split = trajname.split('/')
        trajname_split = [tt for tt in trajname_split if len(tt)>0]
        if trajname_split[-1][0] == 'P':
            trajlist.append(trajname)
    return trajlist

def _list_blobs_in_folder(folder_name):
    """
    List all blobs in a virtual folder in an Azure blob container
    """
    
    files = []
    generator = container_client.list_blobs(name_starts_with=folder_name)
    for blob in generator:
        files.append(blob.name)
    return files

def get_image_list(trajdir, left_right = 'left'):
    assert(left_right == 'left' or left_right == 'right')
    files = _list_blobs_in_folder(trajdir + '/image_' + left_right + '/')
    files = [fn for fn in files if fn.endswith('.png')]
    return files

def get_depth_list(trajdir, left_right = 'left'):
    assert(left_right == 'left' or left_right == 'right')
    files = _list_blobs_in_folder(trajdir + '/depth_' + left_right + '/')
    files = [fn for fn in files if fn.endswith('.npy')]
    return files

def get_flow_list(trajdir, ):
    files = _list_blobs_in_folder(trajdir + '/flow/')
    files = [fn for fn in files if fn.endswith('flow.npy')]
    return files

def get_flow_mask_list(trajdir, ):
    files = _list_blobs_in_folder(trajdir + '/flow/')
    files = [fn for fn in files if fn.endswith('mask.npy')]
    return files

def get_posefile(trajdir, left_right = 'left'):
    assert(left_right == 'left' or left_right == 'right')
    return trajdir + '/pose_' + left_right + '.txt'

def get_seg_list(trajdir, left_right = 'left'):
    assert(left_right == 'left' or left_right == 'right')
    files = _list_blobs_in_folder(trajdir + '/seg_' + left_right + '/')
    files = [fn for fn in files if fn.endswith('.npy')]
    return files

List all the environments

In [3]:
envlist = get_environment_list()
print('Find {} environments..'.format(len(envlist)))
print(envlist)
Find 18 environments..
['abandonedfactory/', 'abandonedfactory_night/', 'amusement/', 'carwelding/', 'endofworld/', 'gascola/', 'hospital/', 'japanesealley/', 'neighborhood/', 'ocean/', 'office/', 'office2/', 'oldtown/', 'seasidetown/', 'seasonsforest/', 'seasonsforest_winter/', 'soulcity/', 'westerndesert/']

List all the 'Easy' trajectories in the first environment

In [4]:
diff_level = 'Easy'
env_ind = 0
trajlist = get_trajectory_list(envlist[env_ind], easy_hard = diff_level)
print('Find {} trajectories in {}'.format(len(trajlist), envlist[env_ind]+diff_level))
print(trajlist)
Find 10 trajectories in abandonedfactory/Easy
['abandonedfactory/Easy/P000/', 'abandonedfactory/Easy/P001/', 'abandonedfactory/Easy/P002/', 'abandonedfactory/Easy/P004/', 'abandonedfactory/Easy/P005/', 'abandonedfactory/Easy/P006/', 'abandonedfactory/Easy/P008/', 'abandonedfactory/Easy/P009/', 'abandonedfactory/Easy/P010/', 'abandonedfactory/Easy/P011/']

List all the data files in one trajectory

In [5]:
traj_ind = 1
traj_dir = trajlist[traj_ind]

left_img_list = get_image_list(traj_dir, left_right = 'left')
print('Find {} left images in {}'.format(len(left_img_list), traj_dir))  

right_img_list = get_image_list(traj_dir, left_right = 'right')
print('Find {} right images in {}'.format(len(right_img_list), traj_dir))

left_depth_list = get_depth_list(traj_dir, left_right = 'left')
print('Find {} left depth files in {}'.format(len(left_depth_list), traj_dir))

right_depth_list = get_depth_list(traj_dir, left_right = 'right')
print('Find {} right depth files in {}'.format(len(right_depth_list), traj_dir))

left_seg_list = get_seg_list(traj_dir, left_right = 'left')
print('Find {} left segmentation files in {}'.format(len(left_seg_list), traj_dir))

right_seg_list = get_seg_list(traj_dir, left_right = 'left')
print('Find {} right segmentation files in {}'.format(len(right_seg_list), traj_dir))

flow_list = get_flow_list(traj_dir)
print('Find {} flow files in {}'.format(len(flow_list), traj_dir)) 

flow_mask_list = get_flow_mask_list(traj_dir)
print('Find {} flow mask files in {}'.format(len(flow_mask_list), traj_dir)) 

left_pose_file = get_posefile(traj_dir, left_right = 'left')
print('Left pose file: {}'.format(left_pose_file))

right_pose_file = get_posefile(traj_dir, left_right = 'right')
print('Right pose file: {}'.format(right_pose_file))
Find 434 left images in abandonedfactory/Easy/P001/
Find 434 right images in abandonedfactory/Easy/P001/
Find 434 left depth files in abandonedfactory/Easy/P001/
Find 434 right depth files in abandonedfactory/Easy/P001/
Find 434 left segmentation files in abandonedfactory/Easy/P001/
Find 434 right segmentation files in abandonedfactory/Easy/P001/
Find 433 flow files in abandonedfactory/Easy/P001/
Find 433 flow mask files in abandonedfactory/Easy/P001/
Left pose file: abandonedfactory/Easy/P001//pose_left.txt
Right pose file: abandonedfactory/Easy/P001//pose_right.txt

Functions for data downloading

In [6]:
def read_numpy_file(numpy_file,):
    '''
    return a numpy array given the file path
    '''
    bc = container_client.get_blob_client(blob=numpy_file)
    data = bc.download_blob()
    ee = io.BytesIO(data.content_as_bytes())
    ff = np.load(ee)
    return ff


def read_image_file(image_file,):
    '''
    return a uint8 numpy array given the file path  
    '''
    bc = container_client.get_blob_client(blob=image_file)
    data = bc.download_blob()
    ee = io.BytesIO(data.content_as_bytes())
    img=cv2.imdecode(np.asarray(bytearray(ee.read()),dtype=np.uint8), cv2.IMREAD_COLOR)
    im_rgb = img[:, :, [2, 1, 0]] # BGR2RGB
    return im_rgb

Functions for data visualization

In [7]:
def depth2vis(depth, maxthresh = 50):
    depthvis = np.clip(depth,0,maxthresh)
    depthvis = depthvis/maxthresh*255
    depthvis = depthvis.astype(np.uint8)
    depthvis = np.tile(depthvis.reshape(depthvis.shape+(1,)), (1,1,3))

    return depthvis

def seg2vis(segnp):
    colors = [(205, 92, 92), (0, 255, 0), (199, 21, 133), (32, 178, 170), (233, 150, 122), (0, 0, 255), (128, 0, 0), (255, 0, 0), (255, 0, 255), (176, 196, 222), (139, 0, 139), (102, 205, 170), (128, 0, 128), (0, 255, 255), (0, 255, 255), (127, 255, 212), (222, 184, 135), (128, 128, 0), (255, 99, 71), (0, 128, 0), (218, 165, 32), (100, 149, 237), (30, 144, 255), (255, 0, 255), (112, 128, 144), (72, 61, 139), (165, 42, 42), (0, 128, 128), (255, 255, 0), (255, 182, 193), (107, 142, 35), (0, 0, 128), (135, 206, 235), (128, 0, 0), (0, 0, 255), (160, 82, 45), (0, 128, 128), (128, 128, 0), (25, 25, 112), (255, 215, 0), (154, 205, 50), (205, 133, 63), (255, 140, 0), (220, 20, 60), (255, 20, 147), (95, 158, 160), (138, 43, 226), (127, 255, 0), (123, 104, 238), (255, 160, 122), (92, 205, 92),]
    segvis = np.zeros(segnp.shape+(3,), dtype=np.uint8)

    for k in range(256):
        mask = segnp==k
        colorind = k % len(colors)
        if np.sum(mask)>0:
            segvis[mask,:] = colors[colorind]

    return segvis

def _calculate_angle_distance_from_du_dv(du, dv, flagDegree=False):
    a = np.arctan2( dv, du )

    angleShift = np.pi

    if ( True == flagDegree ):
        a = a / np.pi * 180
        angleShift = 180
        # print("Convert angle from radian to degree as demanded by the input file.")

    d = np.sqrt( du * du + dv * dv )

    return a, d, angleShift

def flow2vis(flownp, maxF=500.0, n=8, mask=None, hueMax=179, angShift=0.0): 
    """
    Show a optical flow field as the KITTI dataset does.
    Some parts of this function is the transform of the original MATLAB code flow_to_color.m.
    """

    ang, mag, _ = _calculate_angle_distance_from_du_dv( flownp[:, :, 0], flownp[:, :, 1], flagDegree=False )

    # Use Hue, Saturation, Value colour model 
    hsv = np.zeros( ( ang.shape[0], ang.shape[1], 3 ) , dtype=np.float32)

    am = ang < 0
    ang[am] = ang[am] + np.pi * 2

    hsv[ :, :, 0 ] = np.remainder( ( ang + angShift ) / (2*np.pi), 1 )
    hsv[ :, :, 1 ] = mag / maxF * n
    hsv[ :, :, 2 ] = (n - hsv[:, :, 1])/n

    hsv[:, :, 0] = np.clip( hsv[:, :, 0], 0, 1 ) * hueMax
    hsv[:, :, 1:3] = np.clip( hsv[:, :, 1:3], 0, 1 ) * 255
    hsv = hsv.astype(np.uint8)

    rgb = cv2.cvtColor(hsv, cv2.COLOR_HSV2RGB)

    if ( mask is not None ):
        mask = mask > 0
        rgb[mask] = np.array([0, 0 ,0], dtype=np.uint8)

    return rgb

Download and visualize the data

In [8]:
data_ind = 173 # randomly select one frame (data_ind < TRAJ_LEN)

Visualize the left and right RGB images

In [9]:
left_img = read_image_file(left_img_list[data_ind])
right_img = read_image_file(right_img_list[data_ind])

plt.figure(figsize=(12, 5))
plt.subplot(121)
plt.imshow(left_img)
plt.title('Left Image')
plt.subplot(122)
plt.imshow(right_img)
plt.title('Right Image')
plt.show()

Visualize the left and right depth files

In [10]:
left_depth = read_numpy_file(left_depth_list[data_ind])
left_depth_vis = depth2vis(left_depth)

right_depth = read_numpy_file(right_depth_list[data_ind])
right_depth_vis = depth2vis(right_depth)

plt.figure(figsize=(12, 5))
plt.subplot(121)
plt.imshow(left_depth_vis)
plt.title('Left Depth')
plt.subplot(122)
plt.imshow(right_depth_vis)
plt.title('Right Depth')
plt.show()

Visualize the left and right segmentation files

In [11]:
left_seg = read_numpy_file(left_seg_list[data_ind])
left_seg_vis = seg2vis(left_seg)

right_seg = read_numpy_file(right_seg_list[data_ind])
right_seg_vis = seg2vis(right_seg)

plt.figure(figsize=(12, 5))
plt.subplot(121)
plt.imshow(left_seg_vis)
plt.title('Left Segmentation')
plt.subplot(122)
plt.imshow(right_seg_vis)
plt.title('Right Segmentation')
plt.show()

Visualize the flow and mask files

In [12]:
flow = read_numpy_file(flow_list[data_ind])
flow_vis = flow2vis(flow)

flow_mask = read_numpy_file(flow_mask_list[data_ind])
flow_vis_w_mask = flow2vis(flow, mask = flow_mask)

plt.figure(figsize=(12, 5))
plt.subplot(121)
plt.imshow(flow_vis)
plt.title('Optical Flow')
plt.subplot(122)
plt.imshow(flow_vis_w_mask)
plt.title('Optical Flow w/ Mask')
plt.show()