Přeskočit navigaci

NYC Taxi & Limousine Commission - yellow taxi trip records

NYC TLC Taxi yellow

Záznamy o cestách žlutým taxíkem obsahují pole zachytávající data a časy vyzvednutí a vysazení, místa vyzvednutí a vysazení, ujeté vzdálenosti, jízdné rozdělené na položky, typy sazeb, typy plateb a počty cestujících nahlášené řidičem.

Objem a uchovávání

Tato datová sada se uchovává ve formátu Parquet. K roku 2018 obsahuje celkem přibližně 1,5 miliardy řádků (50 GB).

Tato datová sada obsahuje historické záznamy shromážděné mezi lety 2009 a 2018. Pomocí nastavení parametrů v naší sadě SDK můžete načíst data v určitém časovém rozsahu.

Umístění úložiště

Tato datová sada se uchovává v oblasti Azure Východní USA. Kvůli přidružení se doporučuje přidělovat výpočetní prostředky v oblasti Východní USA.

Další informace

Newyorská komise pro taxi a limuzíny (TLC):

Data shromáždili a newyorské komisi pro taxi a limuzíny (TLC) je poskytli poskytovatelé technologií autorizovaní v rámci programů TPEP a LPEP (Taxicab Passenger Enhancement Program a Livery Passenger Enhancement Program). Data o jízdách nevytvořila TLC a TLC nečinní žádná prohlášení ohledně přesnosti těchto dat.

Další informace o datech v záznamech o jízdách TLC najdete tady a tady.

Sdělení

MICROSOFT POSKYTUJE SLUŽBU AZURE OPEN DATASETS TAK, JAK JE. MICROSOFT V SOUVISLOSTI S VAŠÍM POUŽÍVÁNÍM DATOVÝCH SAD NEPOSKYTUJE ŽÁDNÉ ZÁRUKY, AŤ UŽ VÝSLOVNÉ NEBO PŘEDPOKLÁDANÉ, ANI JEJ NIJAK NEPODMIŇUJE. V ROZSAHU POVOLENÉM MÍSTNÍM ZÁKONEM MICROSOFT ODMÍTÁ JAKOUKOLI ODPOVĚDNOST ZA ŠKODY A ZTRÁTY ZPŮSOBENÉ VAŠÍM POUŽÍVÁNÍM DATOVÝCH SAD, VČETNĚ PŘÍMÝCH, NÁSLEDNÝCH, ZVLÁŠTNÍCH, NEPŘÍMÝCH, NÁHODNÝCH NEBO TRESTNÍCH ŠKOD.

Na tuto datovou sadu se vztahují původní podmínky, které Microsoft přijal se zdrojovými daty. Datová sada může obsahovat data pocházející z Microsoftu.

Access

Available inWhen to use
Azure Notebooks

Quickly explore the dataset with Jupyter notebooks hosted on Azure or your local machine.

Azure Databricks

Use this when you need the scale of an Azure managed Spark cluster to process the dataset.

Azure Synapse

Use this when you need the scale of an Azure managed Spark cluster to process the dataset.

Preview

vendorID tpepPickupDateTime tpepDropoffDateTime passengerCount tripDistance puLocationId doLocationId rateCodeId storeAndFwdFlag paymentType fareAmount extra mtaTax improvementSurcharge tipAmount tollsAmount totalAmount puYear puMonth
2 1/24/2088 12:25:39 AM 1/24/2088 7:28:25 AM 1 4.05 24 162 1 N 2 14.5 0 0.5 0.3 0 0 15.3 2088 1
2 1/24/2088 12:15:42 AM 1/24/2088 12:19:46 AM 1 0.63 41 166 1 N 2 4.5 0 0.5 0.3 0 0 5.3 2088 1
2 11/4/2084 12:32:24 PM 11/4/2084 12:47:41 PM 1 1.34 238 236 1 N 2 10 0 0.5 0.3 0 0 10.8 2084 11
2 11/4/2084 12:25:53 PM 11/4/2084 12:29:00 PM 1 0.32 238 238 1 N 2 4 0 0.5 0.3 0 0 4.8 2084 11
2 11/4/2084 12:08:33 PM 11/4/2084 12:22:24 PM 1 1.85 236 238 1 N 2 10 0 0.5 0.3 0 0 10.8 2084 11
2 11/4/2084 11:41:35 AM 11/4/2084 11:59:41 AM 1 1.65 68 237 1 N 2 12.5 0 0.5 0.3 0 0 13.3 2084 11
2 11/4/2084 11:27:28 AM 11/4/2084 11:39:52 AM 1 1.07 170 68 1 N 2 9 0 0.5 0.3 0 0 9.8 2084 11
2 11/4/2084 11:19:06 AM 11/4/2084 11:26:44 AM 1 1.3 107 170 1 N 2 7.5 0 0.5 0.3 0 0 8.3 2084 11
2 11/4/2084 11:02:59 AM 11/4/2084 11:15:51 AM 1 1.85 113 137 1 N 2 10 0 0.5 0.3 0 0 10.8 2084 11
2 11/4/2084 10:46:05 AM 11/4/2084 10:50:09 AM 1 0.62 231 231 1 N 2 4.5 0 0.5 0.3 0 0 5.3 2084 11
Name Data type Unique Values (sample) Description
doLocationId string 265 161
236

Taxi zóna TLC, ve které se vypnul taxametr

endLat double 961,994 41.366138
40.75
endLon double 1,144,935 -73.137393
-73.9824
extra double 877 0.5
1.0

Ostatní poplatky a přirážky. V současné době to jsou pouze poplatky za jízdu v dopravní špičce a noční jízdu ve výši 0,50 USD a 1 USD.

fareAmount double 18,935 6.5
4.5

Výše jízdného vypočítaná taxametrem na základě času a vzdálenosti

improvementSurcharge string 60 0.3
0

Příplatek 0,30 USD za jízdu z ulice, který se účtuje při nástupu. Tento příplatek se začal vybírat v roce 2015.

mtaTax double 360 0.5
-0.5

Daň MTA ve výši 0,50 USD, která se automaticky připočte na základě naměřené sazby

passengerCount int 64 1
2

Počet cestujících ve vozidle. Tuto hodnotu zadává řidič.

paymentType string 6,282 CSH
CRD

Číselný kód označující způsob, jakým cestující zaplatil za jízdu.

1 = Platební karta

2 = Hotovost

3 = Zdarma

4 = Došlo ke sporu

5 = Neznámé

6 = Jízda prohlášená za neplatnou

puLocationId string 266 237
161

Taxi zóna TLC, ve které se zapnul taxametr

puMonth int 12 3
5
puYear int 29 2012
2011
rateCodeId int 56 1
2

Kód konečné sazby použité na konci jízdy.

1 = Standardní sazba

2 = JFK

3 = Newark

4 = Nassau nebo Westchester

5 = Vyjednaná cena jízdy

6 = Skupinová jízda

startLat double 833,016 41.366138
40.7741
startLon double 957,428 -73.137393
-73.9823
storeAndFwdFlag string 8 N
0

Tento příznak označuje, jestli se záznam o jízdě před odesláním dodavateli uchovával v paměti vozidla (tzv. uložení a přeposlání), protože vozidlo nemělo připojení k serveru.

Y = jízda se uložila a přeposlala

N = jízda se neuložila a nepřeposlala

tipAmount double 12,121 1.0
2.0

Do tohoto pole se automaticky doplní spropitné přes platební kartu. Spropitné v hotovosti se nezahrnuje.

tollsAmount double 6,634 5.33
4.8

Celková výše zaplaceného mýtného během jízdy

totalAmount double 39,707 7.0
7.8

Celková částka účtovaná cestujícím. Nezahrnuje spropitné v hotovosti.

tpepDropoffDateTime timestamp 290,185,010 2013-11-03 01:34:00
2013-11-03 01:49:00

Datum a čas vypnutí taxametru

tpepPickupDateTime timestamp 289,948,585 2010-11-07 01:01:00
2011-11-06 01:10:00

Datum a čas zapnutí taxametru

tripDistance double 14,003 1.0
0.9

Ujetá vzdálenost v mílích hlášená taxametrem

vendorID string 7 VTS
CMT

Kód označující poskytovatele TPEP, který je autorem záznamu.

1 = Creative Mobile Technologies, LLC

2 = VeriFone Inc.

Select your preferred service:

Azure Notebooks

Azure Databricks

Azure Synapse

Azure Notebooks

Package: Language: Python Python
In [1]:
# This is a package in preview.
from azureml.opendatasets import NycTlcYellow

from datetime import datetime
from dateutil import parser


end_date = parser.parse('2018-06-06')
start_date = parser.parse('2018-05-01')
nyc_tlc = NycTlcYellow(start_date=start_date, end_date=end_date)
nyc_tlc_df = nyc_tlc.to_pandas_dataframe()
ActivityStarted, to_pandas_dataframe ActivityStarted, to_pandas_dataframe_in_worker Target paths: ['/puYear=2018/puMonth=5/', '/puYear=2018/puMonth=6/'] Looking for parquet files... Reading them into Pandas dataframe... Reading yellow/puYear=2018/puMonth=5/part-00087-tid-4962944523873006564-6d1b261c-5f96-4819-ba4d-a034cf2bc6ec-12005.c000.snappy.parquet under container nyctlc Reading yellow/puYear=2018/puMonth=6/part-00171-tid-4962944523873006564-6d1b261c-5f96-4819-ba4d-a034cf2bc6ec-12089.c000.snappy.parquet under container nyctlc Done. ActivityCompleted: Activity=to_pandas_dataframe_in_worker, HowEnded=Success, Duration=137433.5 [ms] ActivityCompleted: Activity=to_pandas_dataframe, HowEnded=Success, Duration=137510.05 [ms]
In [2]:
nyc_tlc_df.info()
<class 'pandas.core.frame.DataFrame'> Int64Index: 10695823 entries, 189 to 5673232 Data columns (total 21 columns): vendorID object tpepPickupDateTime datetime64[ns] tpepDropoffDateTime datetime64[ns] passengerCount int32 tripDistance float64 puLocationId object doLocationId object startLon float64 startLat float64 endLon float64 endLat float64 rateCodeId int32 storeAndFwdFlag object paymentType object fareAmount float64 extra float64 mtaTax float64 improvementSurcharge object tipAmount float64 tollsAmount float64 totalAmount float64 dtypes: datetime64[ns](2), float64(11), int32(2), object(6) memory usage: 1.7+ GB
In [1]:
# Pip install packages
import os, sys

!{sys.executable} -m pip install azure-storage-blob
!{sys.executable} -m pip install pyarrow
!{sys.executable} -m pip install pandas
In [2]:
# Azure storage access info
azure_storage_account_name = "azureopendatastorage"
azure_storage_sas_token = r""
container_name = "nyctlc"
folder_name = "yellow"
In [3]:
from azure.storage.blob import BlockBlobServicefrom azure.storage.blob import BlobServiceClient, BlobClient, ContainerClient

if azure_storage_account_name is None or azure_storage_sas_token is None:
    raise Exception(
        "Provide your specific name and key for your Azure Storage account--see the Prerequisites section earlier.")

print('Looking for the first parquet under the folder ' +
      folder_name + ' in container "' + container_name + '"...')
container_url = f"https://{azure_storage_account_name}.blob.core.windows.net/"
blob_service_client = BlobServiceClient(
    container_url, azure_storage_sas_token if azure_storage_sas_token else None)

container_client = blob_service_client.get_container_client(container_name)
blobs = container_client.list_blobs(folder_name)
sorted_blobs = sorted(list(blobs), key=lambda e: e.name, reverse=True)
targetBlobName = ''
for blob in sorted_blobs:
    if blob.name.startswith(folder_name) and blob.name.endswith('.parquet'):
        targetBlobName = blob.name
        break

print('Target blob to download: ' + targetBlobName)
_, filename = os.path.split(targetBlobName)
blob_client = container_client.get_blob_client(targetBlobName)
with open(filename, 'wb') as local_file:
    blob_client.download_blob().download_to_stream(local_file)
In [4]:
# Read the parquet file into Pandas data frame
import pandas as pd

print('Reading the parquet file into Pandas data frame')
df = pd.read_parquet(filename)
In [5]:
# you can add your filter at below
print('Loaded as a Pandas data frame: ')
df
In [6]:
 

Azure Databricks

Package: Language: Python Python
In [1]:
# This is a package in preview.
# You need to pip install azureml-opendatasets in Databricks cluster. https://docs.microsoft.com/en-us/azure/data-explorer/connect-from-databricks#install-the-python-library-on-your-azure-databricks-cluster
from azureml.opendatasets import NycTlcYellow

from datetime import datetime
from dateutil import parser


end_date = parser.parse('2018-06-06')
start_date = parser.parse('2018-05-01')
nyc_tlc = NycTlcYellow(start_date=start_date, end_date=end_date)
nyc_tlc_df = nyc_tlc.to_spark_dataframe()
ActivityStarted, to_spark_dataframe ActivityStarted, to_spark_dataframe_in_worker ActivityCompleted: Activity=to_spark_dataframe_in_worker, HowEnded=Success, Duration=91957.61 [ms] ActivityCompleted: Activity=to_spark_dataframe, HowEnded=Success, Duration=91961.14 [ms]
In [2]:
display(nyc_tlc_df.limit(5))
vendorIDtpepPickupDateTimetpepDropoffDateTimepassengerCounttripDistancepuLocationIddoLocationIdstartLonstartLatendLonendLatrateCodeIdstoreAndFwdFlagpaymentTypefareAmountextramtaTaximprovementSurchargetipAmounttollsAmounttotalAmountpuYearpuMonth
22018-06-05T23:37:15.000+00002018-06-06T00:15:57.000+0000121.65132142nullnullnullnull2N152.00.00.50.38.05.7666.5620186
22018-05-31T18:04:19.000+00002018-06-01T17:56:15.000+000019.95230138nullnullnullnull1N135.01.00.50.38.515.7651.0720186
22018-05-31T18:58:20.000+00002018-06-01T18:55:28.000+000021.9148239nullnullnullnull1N212.01.00.50.30.00.013.820186
22018-05-31T16:45:53.000+00002018-06-01T16:06:26.000+000062.79230125nullnullnullnull1N214.01.00.50.30.00.015.820186
22018-05-31T15:08:53.000+00002018-06-01T14:21:29.000+000011.723674nullnullnullnull1N110.01.00.50.32.360.014.1620186
In [1]:
# Azure storage access info
blob_account_name = "azureopendatastorage"
blob_container_name = "nyctlc"
blob_relative_path = "yellow"
blob_sas_token = r""
In [2]:
# Allow SPARK to read from Blob remotely
wasbs_path = 'wasbs://%s@%s.blob.core.windows.net/%s' % (blob_container_name, blob_account_name, blob_relative_path)
spark.conf.set(
  'fs.azure.sas.%s.%s.blob.core.windows.net' % (blob_container_name, blob_account_name),
  blob_sas_token)
print('Remote blob path: ' + wasbs_path)
In [3]:
# SPARK read parquet, note that it won't load any data yet by now
df = spark.read.parquet(wasbs_path)
print('Register the DataFrame as a SQL temporary view: source')
df.createOrReplaceTempView('source')
In [4]:
# Display top 10 rows
print('Displaying top 10 rows: ')
display(spark.sql('SELECT * FROM source LIMIT 10'))

Azure Synapse

Package: Language: Python Python
In [31]:
# This is a package in preview.
from azureml.opendatasets import NycTlcYellow

from datetime import datetime
from dateutil import parser


end_date = parser.parse('2018-06-06')
start_date = parser.parse('2018-05-01')
nyc_tlc = NycTlcYellow(start_date=start_date, end_date=end_date)
nyc_tlc_df = nyc_tlc.to_spark_dataframe()
In [32]:
# Display top 5 rows
display(nyc_tlc_df.limit(5))
Out[32]:
In [1]:
# Azure storage access info
blob_account_name = "azureopendatastorage"
blob_container_name = "nyctlc"
blob_relative_path = "yellow"
blob_sas_token = r""
In [2]:
# Allow SPARK to read from Blob remotely
wasbs_path = 'wasbs://%s@%s.blob.core.windows.net/%s' % (blob_container_name, blob_account_name, blob_relative_path)
spark.conf.set(
  'fs.azure.sas.%s.%s.blob.core.windows.net' % (blob_container_name, blob_account_name),
  blob_sas_token)
print('Remote blob path: ' + wasbs_path)
In [3]:
# SPARK read parquet, note that it won't load any data yet by now
df = spark.read.parquet(wasbs_path)
print('Register the DataFrame as a SQL temporary view: source')
df.createOrReplaceTempView('source')
In [4]:
# Display top 10 rows
print('Displaying top 10 rows: ')
display(spark.sql('SELECT * FROM source LIMIT 10'))